Properties

Label 16170bf
Number of curves $4$
Conductor $16170$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 16170bf have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 16170bf do not have complex multiplication.

Modular form 16170.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 6 q^{13} + q^{15} + q^{16} - 6 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 16170bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
16170.bh3 16170bf1 \([1, 0, 1, -42313, 3339788]\) \(71210194441849/165580800\) \(19480415539200\) \([2]\) \(73728\) \(1.4306\) \(\Gamma_0(N)\)-optimal
16170.bh2 16170bf2 \([1, 0, 1, -57993, 636556]\) \(183337554283129/104587560000\) \(12304621846440000\) \([2, 2]\) \(147456\) \(1.7772\)  
16170.bh1 16170bf3 \([1, 0, 1, -596993, -176802244]\) \(200005594092187129/1027287538200\) \(120859351581691800\) \([2]\) \(294912\) \(2.1238\)  
16170.bh4 16170bf4 \([1, 0, 1, 230127, 5131228]\) \(11456208593737991/6725709375000\) \(-791272982259375000\) \([2]\) \(294912\) \(2.1238\)