Properties

Label 161700da
Number of curves $2$
Conductor $161700$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("da1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 161700da have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 161700da do not have complex multiplication.

Modular form 161700.2.a.da

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{11} + 4 q^{13} - 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 161700da

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
161700.bf1 161700da1 \([0, -1, 0, -6747708, -6744386088]\) \(-2888047810000/35937\) \(-422795211300000000\) \([]\) \(4898880\) \(2.5293\) \(\Gamma_0(N)\)-optimal
161700.bf2 161700da2 \([0, -1, 0, -3072708, -14032646088]\) \(-272709010000/7073843073\) \(-83223056369537700000000\) \([]\) \(14696640\) \(3.0786\)