Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+61913043x+1070949830301\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+61913043xz^2+1070949830301z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+80239303053x+49965031692974286\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(165227, 67163394)$ | $7.0907953637854475095242439321$ | $\infty$ |
| $(-32981/4, 32981/8)$ | $0$ | $2$ |
Integral points
\( \left(165227, 67163394\right) \), \( \left(165227, -67328621\right) \)
Invariants
| Conductor: | $N$ | = | \( 16170 \) | = | $2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-510640322217367840432704000$ | = | $-1 \cdot 2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7^{10} \cdot 11^{12} $ |
|
| j-invariant: | $j$ | = | \( \frac{223090928422700449019831}{4340371122724101696000} \) | = | $2^{-9} \cdot 3^{-2} \cdot 5^{-3} \cdot 7^{-4} \cdot 11^{-12} \cdot 13^{3} \cdot 83^{3} \cdot 56209^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8051960945725503781751706842$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.8322410200448937256224943125$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.055037962862197$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.1120473193024365$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.0907953637854475095242439321$ |
|
| Real period: | $\Omega$ | ≈ | $0.038996594315457193005047411449$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 1\cdot2\cdot3\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.3182024421055896152422723330 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.318202442 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.038997 \cdot 7.090795 \cdot 48}{2^2} \\ & \approx 3.318202442\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7962624 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $11$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right),\left(\begin{array}{rr} 6934 & 3 \\ 6975 & 34 \end{array}\right),\left(\begin{array}{rr} 1926 & 409 \\ 4235 & 2696 \end{array}\right),\left(\begin{array}{rr} 2521 & 24 \\ 2532 & 289 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 3712 & 21 \\ 8955 & 8866 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7701 & 6164 \\ 20 & 4701 \end{array}\right),\left(\begin{array}{rr} 3959 & 9216 \\ 1308 & 8951 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 245 = 5 \cdot 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 49 = 7^{2} \) |
| $5$ | split multiplicative | $6$ | \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 16170.k
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310.h8, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{35}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-14}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{21}) \) | \(\Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{15}, \sqrt{21})\) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{-14})\) | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-10}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-10}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.992436543.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.12745506816000000.41 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.7965941760000.46 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $18$ | 18.6.45854893638403577461916987956676164382080078125.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | split | add | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 5 | 1 | 4 | - | 1 | 1 | 1 | 1 | 3,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.