Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy+y=x^3+x^2-1983570x+1148451807\) | (homogenize, simplify) | 
| \(y^2z+xyz+yz^2=x^3+x^2z-1983570xz^2+1148451807z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-2570706747x+53620728116886\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(517, 15911)$ | $0.22159466736126014747471859031$ | $\infty$ | 
| $(825, 8211)$ | $0$ | $4$ | 
Integral points
      
    \( \left(-1639, 819\right) \), \( \left(-1463, 31091\right) \), \( \left(-1463, -29629\right) \), \( \left(-743, 47411\right) \), \( \left(-743, -46669\right) \), \( \left(-253, 40551\right) \), \( \left(-253, -40299\right) \), \( \left(297, 24051\right) \), \( \left(297, -24349\right) \), \( \left(517, 15911\right) \), \( \left(517, -16429\right) \), \( \left(665, 10803\right) \), \( \left(665, -11469\right) \), \( \left(727, 9191\right) \), \( \left(727, -9919\right) \), \( \left(825, 8211\right) \), \( \left(825, -9037\right) \), \( \left(1177, 20531\right) \), \( \left(1177, -21709\right) \), \( \left(1497, 38451\right) \), \( \left(1497, -39949\right) \), \( \left(5137, 353171\right) \), \( \left(5137, -358309\right) \), \( \left(13761, 1599339\right) \), \( \left(13761, -1613101\right) \), \( \left(32857, 5934131\right) \), \( \left(32857, -5966989\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 16170 \) | = | $2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11$ |  | 
| Discriminant: | $\Delta$ | = | $-71117987883909120000$ | = | $-1 \cdot 2^{20} \cdot 3^{2} \cdot 5^{4} \cdot 7^{7} \cdot 11^{4} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{7336316844655213969}{604492922880000} \) | = | $-1 \cdot 2^{-20} \cdot 3^{-2} \cdot 5^{-4} \cdot 7^{-1} \cdot 11^{-4} \cdot 503^{3} \cdot 3863^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5550119056927147103758337263$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5820568311650580578231573546$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0882037062307908$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.701005244083677$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.22159466736126014747471859031$ |  | 
| Real period: | $\Omega$ | ≈ | $0.19068226925298838120320078278$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2560 $ = $ ( 2^{2} \cdot 5 )\cdot2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $6.7606678442889926077985468215 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 6.760667844 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.190682 \cdot 0.221595 \cdot 2560}{4^2} \\ & \approx 6.760667844\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 737280 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 | 
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.12.0.7 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 616 = 2^{3} \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 609 & 8 \\ 608 & 9 \end{array}\right),\left(\begin{array}{rr} 81 & 80 \\ 398 & 87 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 436 & 615 \\ 505 & 610 \end{array}\right),\left(\begin{array}{rr} 547 & 542 \\ 82 & 387 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 610 & 611 \end{array}\right),\left(\begin{array}{rr} 57 & 8 \\ 228 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[616])$ is a degree-$851558400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/616\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 49 = 7^{2} \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 5390 = 2 \cdot 5 \cdot 7^{2} \cdot 11 \) | 
| $5$ | split multiplicative | $6$ | \( 1617 = 3 \cdot 7^{2} \cdot 11 \) | 
| $7$ | additive | $32$ | \( 330 = 2 \cdot 3 \cdot 5 \cdot 11 \) | 
| $11$ | split multiplicative | $12$ | \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 16170.bt
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2310.r4, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.2.2656192.2 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.2439569664.6 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.11662935330816.26 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | 8.0.7055355940864.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | nonsplit | split | add | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 5 | 1 | 4 | - | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
