Properties

Label 161262z
Number of curves $2$
Conductor $161262$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 161262z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(17\)\(1\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 161262z do not have complex multiplication.

Modular form 161262.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{5} + 4 q^{7} - q^{8} + 3 q^{10} - 3 q^{11} + 5 q^{13} - 4 q^{14} + q^{16} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 161262z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
161262.b1 161262z1 \([1, -1, 0, -13926, 1359316]\) \(-458314011/953312\) \(-621287122820256\) \([]\) \(1209600\) \(1.5277\) \(\Gamma_0(N)\)-optimal
161262.b2 161262z2 \([1, -1, 0, 120459, -29325259]\) \(406869021/1015808\) \(-482610147801071616\) \([]\) \(3628800\) \(2.0770\)