Properties

Label 160550.br
Number of curves $1$
Conductor $160550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 160550.br1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 160550.br do not have complex multiplication.

Modular form 160550.2.a.br

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} - 2 q^{9} + q^{12} + q^{14} + q^{16} + 7 q^{17} + 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 160550.br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
160550.br1 160550dz1 \([1, 0, 1, 6249, 360648]\) \(357911/950\) \(-71647946093750\) \([]\) \(430848\) \(1.3422\) \(\Gamma_0(N)\)-optimal