Properties

Label 1600.p
Number of curves $4$
Conductor $1600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1600.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1600.p do not have complex multiplication.

Modular form 1600.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{7} - 2 q^{9} - 3 q^{11} + 4 q^{13} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1600.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1600.p1 1600v2 \([0, 1, 0, -8033, 274463]\) \(-349938025/8\) \(-1310720000\) \([]\) \(1152\) \(0.86293\)  
1600.p2 1600v3 \([0, 1, 0, -4833, -157537]\) \(-121945/32\) \(-3276800000000\) \([]\) \(1920\) \(1.1183\)  
1600.p3 1600v1 \([0, 1, 0, -33, 863]\) \(-25/2\) \(-327680000\) \([]\) \(384\) \(0.31362\) \(\Gamma_0(N)\)-optimal
1600.p4 1600v4 \([0, 1, 0, 35167, 1162463]\) \(46969655/32768\) \(-3355443200000000\) \([]\) \(5760\) \(1.6676\)