Properties

Label 159936es
Number of curves $2$
Conductor $159936$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("es1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 159936es have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159936es do not have complex multiplication.

Modular form 159936.2.a.es

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{9} + 6 q^{11} + 4 q^{13} - 2 q^{15} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 159936es

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159936.em2 159936es1 \([0, -1, 0, -1182337, 5164412065]\) \(-23707171994692/1480419781911\) \(-11414399020043287855104\) \([2]\) \(12976128\) \(2.9122\) \(\Gamma_0(N)\)-optimal
159936.em1 159936es2 \([0, -1, 0, -52620577, 145992025537]\) \(1044942448578893426/7759962920241\) \(119662428501237223784448\) \([2]\) \(25952256\) \(3.2588\)