Properties

Label 159936.dj
Number of curves $1$
Conductor $159936$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 159936.dj1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159936.dj do not have complex multiplication.

Modular form 159936.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + q^{11} - 7 q^{13} - q^{15} + q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 159936.dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159936.dj1 159936jn1 \([0, -1, 0, 6795, -234387]\) \(17997824/22491\) \(-43352779309056\) \([]\) \(442368\) \(1.3027\) \(\Gamma_0(N)\)-optimal