Properties

Label 159600.eg
Number of curves $4$
Conductor $159600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 159600.eg have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 159600.eg do not have complex multiplication.

Modular form 159600.2.a.eg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 2 q^{13} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 159600.eg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
159600.eg1 159600by4 \([0, 1, 0, -2511808, -1533073612]\) \(27384399945278713/153257496\) \(9808479744000000\) \([2]\) \(2359296\) \(2.2607\)  
159600.eg2 159600by2 \([0, 1, 0, -159808, -23089612]\) \(7052482298233/499254336\) \(31952277504000000\) \([2, 2]\) \(1179648\) \(1.9142\)  
159600.eg3 159600by1 \([0, 1, 0, -31808, 1742388]\) \(55611739513/11440128\) \(732168192000000\) \([2]\) \(589824\) \(1.5676\) \(\Gamma_0(N)\)-optimal
159600.eg4 159600by3 \([0, 1, 0, 144192, -100305612]\) \(5180411077127/70976229912\) \(-4542478714368000000\) \([2]\) \(2359296\) \(2.2607\)