Properties

Label 158400ex
Number of curves $2$
Conductor $158400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ex1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 158400ex have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 158400ex do not have complex multiplication.

Modular form 158400.2.a.ex

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} + 6 q^{13} - 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 158400ex

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
158400.me2 158400ex1 \([0, 0, 0, -69600, 8215000]\) \(-3196715008/649539\) \(-7576222896000000\) \([2]\) \(983040\) \(1.7694\) \(\Gamma_0(N)\)-optimal
158400.me1 158400ex2 \([0, 0, 0, -1163100, 482794000]\) \(932410994128/29403\) \(5487305472000000\) \([2]\) \(1966080\) \(2.1160\)