Properties

Label 158400.ma
Number of curves $4$
Conductor $158400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ma1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 158400.ma have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 158400.ma do not have complex multiplication.

Modular form 158400.2.a.ma

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} + q^{11} + 2 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 158400.ma

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
158400.ma1 158400hs4 \([0, 0, 0, -14755500, 21816162000]\) \(4406910829875/7744\) \(624333422592000000\) \([2]\) \(5308416\) \(2.6738\)  
158400.ma2 158400hs3 \([0, 0, 0, -931500, 333666000]\) \(1108717875/45056\) \(3632485367808000000\) \([2]\) \(2654208\) \(2.3272\)  
158400.ma3 158400hs2 \([0, 0, 0, -235500, 10994000]\) \(13060888875/7086244\) \(783681896448000000\) \([2]\) \(1769472\) \(2.1245\)  
158400.ma4 158400hs1 \([0, 0, 0, -139500, -19918000]\) \(2714704875/21296\) \(2355167232000000\) \([2]\) \(884736\) \(1.7779\) \(\Gamma_0(N)\)-optimal