Properties

Label 15600.cu
Number of curves $4$
Conductor $15600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15600.cu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15600.cu do not have complex multiplication.

Modular form 15600.2.a.cu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} + q^{9} - q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15600.cu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15600.cu1 15600cc4 \([0, 1, 0, -478408, 120723188]\) \(189208196468929/10860320250\) \(695060496000000000\) \([2]\) \(165888\) \(2.1777\)  
15600.cu2 15600cc2 \([0, 1, 0, -82408, -9092812]\) \(967068262369/4928040\) \(315394560000000\) \([2]\) \(55296\) \(1.6284\)  
15600.cu3 15600cc1 \([0, 1, 0, -2408, -292812]\) \(-24137569/561600\) \(-35942400000000\) \([2]\) \(27648\) \(1.2818\) \(\Gamma_0(N)\)-optimal
15600.cu4 15600cc3 \([0, 1, 0, 21592, 7723188]\) \(17394111071/411937500\) \(-26364000000000000\) \([2]\) \(82944\) \(1.8311\)