Properties

Label 155610.eh
Number of curves $4$
Conductor $155610$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 155610.eh have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155610.eh do not have complex multiplication.

Modular form 155610.2.a.eh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} + q^{13} - q^{14} + q^{16} - 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 155610.eh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155610.eh1 155610u3 \([1, -1, 1, -33196802, 73627734129]\) \(5549896908024170183373529/56019600\) \(40838288400\) \([2]\) \(5242880\) \(2.5448\)  
155610.eh2 155610u4 \([1, -1, 1, -2102882, 1118090481]\) \(1410719602237262088409/76269550743750000\) \(55600502492193750000\) \([2]\) \(5242880\) \(2.5448\)  
155610.eh3 155610u2 \([1, -1, 1, -2074802, 1150820529]\) \(1354958399265695661529/4304795040000\) \(3138195584160000\) \([2, 2]\) \(2621440\) \(2.1983\)  
155610.eh4 155610u1 \([1, -1, 1, -127922, 18515121]\) \(-317562142497484249/18670942617600\) \(-13611117168230400\) \([4]\) \(1310720\) \(1.8517\) \(\Gamma_0(N)\)-optimal