Properties

Label 155232.ek
Number of curves $1$
Conductor $155232$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ek1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 155232.ek1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155232.ek do not have complex multiplication.

Modular form 155232.2.a.ek

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} - q^{11} - 2 q^{13} - q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 155232.ek

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155232.ek1 155232cx1 \([0, 0, 0, 1029, -43218]\) \(1512/11\) \(-876618699264\) \([]\) \(150528\) \(0.97319\) \(\Gamma_0(N)\)-optimal