Properties

Label 155232.eh
Number of curves $4$
Conductor $155232$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 155232.eh have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 155232.eh do not have complex multiplication.

Modular form 155232.2.a.eh

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{11} + 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 155232.eh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
155232.eh1 155232by2 \([0, 0, 0, -138311859, 626090683610]\) \(6663712298552914184/29403\) \(1291152002950656\) \([2]\) \(8847360\) \(2.9860\)  
155232.eh2 155232by4 \([0, 0, 0, -9180444, 8501098592]\) \(243578556889408/52089208083\) \(18298836267994136752128\) \([2]\) \(8847360\) \(2.9860\)  
155232.eh3 155232by1 \([0, 0, 0, -8644629, 9782339420]\) \(13015685560572352/864536409\) \(4745467792844767296\) \([2, 2]\) \(4423680\) \(2.6395\) \(\Gamma_0(N)\)-optimal
155232.eh4 155232by3 \([0, 0, 0, -8111019, 11042619518]\) \(-1343891598641864/421900912521\) \(-18526620013202688532992\) \([2]\) \(8847360\) \(2.9860\)