Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2+1281x-59635\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z+1281xz^2-59635z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3+20493x-3796146\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(20539/36, 2885299/216)$ | $9.9707934245099451156401855805$ | $\infty$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 15390 \) | = | $2 \cdot 3^{4} \cdot 5 \cdot 19$ |  | 
| Discriminant: | $\Delta$ | = | $-1654354575360$ | = | $-1 \cdot 2^{15} \cdot 3^{12} \cdot 5 \cdot 19 $ |  | 
| j-invariant: | $j$ | = | \( \frac{437245479}{3112960} \) | = | $2^{-15} \cdot 3^{3} \cdot 5^{-1} \cdot 11^{3} \cdot 19^{-1} \cdot 23^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0261521708799889397914555619$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.072460117788120751603789675023$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9168832006175711$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6824634923114328$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.9707934245099451156401855805$ |  | 
| Real period: | $\Omega$ | ≈ | $0.41925938115132968859418630714$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.1803486807477868814953280966 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.180348681 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.419259 \cdot 9.970793 \cdot 1}{1^2} \\ & \approx 4.180348681\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 25920 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{15}$ | nonsplit multiplicative | 1 | 1 | 15 | 15 | 
| $3$ | $1$ | $II^{*}$ | additive | 1 | 4 | 12 | 0 | 
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $3$ | 3B.1.2 | 3.8.0.2 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1141 & 6 \\ 1143 & 19 \end{array}\right),\left(\begin{array}{rr} 2275 & 6 \\ 2274 & 7 \end{array}\right),\left(\begin{array}{rr} 474 & 1799 \\ 95 & 189 \end{array}\right),\left(\begin{array}{rr} 1711 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1921 & 6 \\ 1203 & 19 \end{array}\right),\left(\begin{array}{rr} 457 & 6 \\ 1371 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$272321740800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 7695 = 3^{4} \cdot 5 \cdot 19 \) | 
| $3$ | additive | $2$ | \( 95 = 5 \cdot 19 \) | 
| $5$ | split multiplicative | $6$ | \( 1539 = 3^{4} \cdot 19 \) | 
| $19$ | split multiplicative | $20$ | \( 810 = 2 \cdot 3^{4} \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 15390.m
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database | 
| $3$ | 3.1.61560.1 | \(\Z/2\Z\) | not in database | 
| $3$ | 3.1.243675.1 | \(\Z/3\Z\) | not in database | 
| $6$ | 6.0.2880121536000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $6$ | 6.0.178132516875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $6$ | 6.0.11368900800.11 | \(\Z/6\Z\) | not in database | 
| $9$ | 9.1.513043298113570920000000.1 | \(\Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.0.8919956639028163163024104293931200000000.1 | \(\Z/9\Z\) | not in database | 
| $18$ | 18.0.789640277217751208160860021608939200000000000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $18$ | 18.0.12802701027957139588314743817019600896000000000000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | split | ord | ss | ord | ord | split | ss | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 2 | - | 2 | 1 | 1,1 | 1 | 1 | 2 | 1,3 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
