Show commands: SageMath
Rank
The elliptic curves in class 152880db have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 152880db do not have complex multiplication.Modular form 152880.2.a.db
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 152880db
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 152880.cq4 | 152880db1 | \([0, -1, 0, -564514120, 2615444412400]\) | \(41285728533151645510969/17760741842188800000\) | \(8558729285597880857395200000\) | \([2]\) | \(132710400\) | \(4.0561\) | \(\Gamma_0(N)\)-optimal |
| 152880.cq2 | 152880db2 | \([0, -1, 0, -7729897800, 261474961389552]\) | \(105997782562506306791694649/51649016225625000000\) | \(24889160130267363840000000000\) | \([2, 2]\) | \(265420800\) | \(4.4027\) | |
| 152880.cq1 | 152880db3 | \([0, -1, 0, -123663897800, 16738386030189552]\) | \(434014578033107719741685694649/103121648659575000\) | \(49693322621543789260800000\) | \([2]\) | \(530841600\) | \(4.7492\) | |
| 152880.cq3 | 152880db4 | \([0, -1, 0, -6442036680, 351458332988400]\) | \(-61354313914516350666047929/75227254486083984375000\) | \(-36251284533384375000000000000000\) | \([2]\) | \(530841600\) | \(4.7492\) |