Show commands: SageMath
Rank
The elliptic curves in class 152880.hj have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 152880.hj do not have complex multiplication.Modular form 152880.2.a.hj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 12 & 2 & 3 & 6 & 12 & 4 \\ 4 & 1 & 3 & 2 & 12 & 6 & 12 & 4 \\ 12 & 3 & 1 & 6 & 4 & 2 & 4 & 12 \\ 2 & 2 & 6 & 1 & 6 & 3 & 6 & 2 \\ 3 & 12 & 4 & 6 & 1 & 2 & 4 & 12 \\ 6 & 6 & 2 & 3 & 2 & 1 & 2 & 6 \\ 12 & 12 & 4 & 6 & 4 & 2 & 1 & 3 \\ 4 & 4 & 12 & 2 & 12 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 152880.hj
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
152880.hj1 | 152880bb8 | \([0, 1, 0, -1776291960, -28810872974892]\) | \(1286229821345376481036009/247265484375000000\) | \(119154839434176000000000000\) | \([2]\) | \(95551488\) | \(4.0040\) | |
152880.hj2 | 152880bb7 | \([0, 1, 0, -781301880, 8141638214100]\) | \(109454124781830273937129/3914078300576808000\) | \(1886156382144761382469632000\) | \([2]\) | \(95551488\) | \(4.0040\) | |
152880.hj3 | 152880bb4 | \([0, 1, 0, -774469320, 8295468643188]\) | \(106607603143751752938169/5290068420\) | \(2549232679094599680\) | \([2]\) | \(31850496\) | \(3.4547\) | |
152880.hj4 | 152880bb6 | \([0, 1, 0, -122741880, -349307577900]\) | \(424378956393532177129/136231857216000000\) | \(65648811088302833664000000\) | \([2, 2]\) | \(47775744\) | \(3.6575\) | |
152880.hj5 | 152880bb5 | \([0, 1, 0, -53910600, 98287312500]\) | \(35958207000163259449/12145729518877500\) | \(5852909290153652213760000\) | \([2]\) | \(31850496\) | \(3.4547\) | |
152880.hj6 | 152880bb2 | \([0, 1, 0, -48406920, 129590042868]\) | \(26031421522845051769/5797789779600\) | \(2793898679419536998400\) | \([2, 2]\) | \(15925248\) | \(3.1082\) | |
152880.hj7 | 152880bb1 | \([0, 1, 0, -2684040, 2498725620]\) | \(-4437543642183289/3033210136320\) | \(-1461674554687126241280\) | \([2]\) | \(7962624\) | \(2.7616\) | \(\Gamma_0(N)\)-optimal |
152880.hj8 | 152880bb3 | \([0, 1, 0, 21765000, -37230519852]\) | \(2366200373628880151/2612420149248000\) | \(-1258899939896844091392000\) | \([2]\) | \(23887872\) | \(3.3109\) |