Properties

Label 152880.gl
Number of curves $4$
Conductor $152880$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 152880.gl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152880.gl do not have complex multiplication.

Modular form 152880.2.a.gl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - 4 q^{11} + q^{13} + q^{15} - 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 152880.gl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152880.gl1 152880f4 \([0, 1, 0, -3424920, -2440770732]\) \(9219915604149769/511875\) \(246667599360000\) \([2]\) \(3145728\) \(2.2296\)  
152880.gl2 152880f2 \([0, 1, 0, -214440, -38047500]\) \(2263054145689/16769025\) \(8080830555033600\) \([2, 2]\) \(1572864\) \(1.8830\)  
152880.gl3 152880f3 \([0, 1, 0, -77240, -85957740]\) \(-105756712489/6558605235\) \(-3160528270510141440\) \([4]\) \(3145728\) \(2.2296\)  
152880.gl4 152880f1 \([0, 1, 0, -22360, 291668]\) \(2565726409/1404585\) \(676855892643840\) \([2]\) \(786432\) \(1.5364\) \(\Gamma_0(N)\)-optimal