Properties

Label 152880.cd
Number of curves $2$
Conductor $152880$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 152880.cd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152880.cd do not have complex multiplication.

Modular form 152880.2.a.cd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + 4 q^{11} - q^{13} + q^{15} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 152880.cd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152880.cd1 152880ex2 \([0, -1, 0, -8243776, 9097163776]\) \(374852148636727/760500000\) \(125701808633856000000\) \([2]\) \(7741440\) \(2.7434\)  
152880.cd2 152880ex1 \([0, -1, 0, -341056, 239795200]\) \(-26543596087/134784000\) \(-22278228237877248000\) \([2]\) \(3870720\) \(2.3969\) \(\Gamma_0(N)\)-optimal