Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2+50x+363\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z+50xz^2+363z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+64773x+15972822\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{5}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(21, 95)$ | $2.4679636439135405883446746144$ | $\infty$ |
| $(-3, 15)$ | $0$ | $5$ |
Integral points
\( \left(-3, 15\right) \), \( \left(-3, -13\right) \), \( \left(11, 43\right) \), \( \left(11, -55\right) \), \( \left(21, 95\right) \), \( \left(21, -117\right) \), \( \left(207, 2885\right) \), \( \left(207, -3093\right) \)
Invariants
| Conductor: | $N$ | = | \( 1526 \) | = | $2 \cdot 7 \cdot 109$ |
|
| Discriminant: | $\Delta$ | = | $-58622816$ | = | $-1 \cdot 2^{5} \cdot 7^{5} \cdot 109 $ |
|
| j-invariant: | $j$ | = | \( \frac{13806727199}{58622816} \) | = | $2^{-5} \cdot 7^{-5} \cdot 109^{-1} \cdot 2399^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.17311319827909039178439780281$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.17311319827909039178439780281$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8796259305442545$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.437031050885363$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4679636439135405883446746144$ |
|
| Real period: | $\Omega$ | ≈ | $1.4138827862054837701361082983$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 25 $ = $ 5\cdot5\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $5$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.4894113131103151842830498781 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.489411313 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.413883 \cdot 2.467964 \cdot 25}{5^2} \\ & \approx 3.489411313\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 400 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $7$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
| $109$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $5$ | 5B.1.1 | 5.24.0.1 | $24$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 30520 = 2^{3} \cdot 5 \cdot 7 \cdot 109 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 30511 & 10 \\ 30510 & 11 \end{array}\right),\left(\begin{array}{rr} 15261 & 10 \\ 15265 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 30465 & 30401 \end{array}\right),\left(\begin{array}{rr} 7631 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21801 & 10 \\ 17445 & 51 \end{array}\right),\left(\begin{array}{rr} 10361 & 10 \\ 21285 & 51 \end{array}\right),\left(\begin{array}{rr} 7631 & 15270 \\ 0 & 1527 \end{array}\right)$.
The torsion field $K:=\Q(E[30520])$ is a degree-$4330603649433600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/30520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 763 = 7 \cdot 109 \) |
| $5$ | good | $2$ | \( 109 \) |
| $7$ | split multiplicative | $8$ | \( 218 = 2 \cdot 109 \) |
| $109$ | nonsplit multiplicative | $110$ | \( 14 = 2 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 1526e
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{5}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.6104.1 | \(\Z/10\Z\) | not in database |
| $6$ | 6.0.227427812864.1 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $8$ | deg 8 | \(\Z/15\Z\) | not in database |
| $12$ | deg 12 | \(\Z/20\Z\) | not in database |
| $20$ | 20.0.12116411990537710170358390304267608642578125.1 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 109 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ord | ord | split | ord | ord | ord | ss | ord | ss | ord | ord | ord | ord | ord | nonsplit |
| $\lambda$-invariant(s) | 3 | 1 | 7 | 4 | 1 | 1 | 3 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.