Properties

Label 152592db
Number of curves $2$
Conductor $152592$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("db1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 152592db have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152592db do not have complex multiplication.

Modular form 152592.2.a.db

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - 4 q^{7} + q^{9} + q^{11} + 2 q^{13} + 4 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 152592db

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152592.a1 152592db1 \([0, -1, 0, -22060, -594944]\) \(192143824/85833\) \(530380789754112\) \([2]\) \(1105920\) \(1.5209\) \(\Gamma_0(N)\)-optimal
152592.a2 152592db2 \([0, -1, 0, 76200, -4525344]\) \(1979654684/1499553\) \(-37064257542816768\) \([2]\) \(2211840\) \(1.8674\)