Properties

Label 152592bk
Number of curves $1$
Conductor $152592$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 152592bk1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152592bk do not have complex multiplication.

Modular form 152592.2.a.bk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - 5 q^{7} + q^{9} + q^{11} - q^{13} + 2 q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 152592bk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152592.e1 152592bk1 \([0, -1, 0, -263664, 55762368]\) \(-70945777/5808\) \(-165950255994175488\) \([]\) \(1880064\) \(2.0502\) \(\Gamma_0(N)\)-optimal