Properties

Label 152592be
Number of curves $1$
Conductor $152592$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 152592be1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152592be do not have complex multiplication.

Modular form 152592.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + 5 q^{7} + q^{9} - q^{11} - q^{13} + 2 q^{15} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 152592be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152592.dg1 152592be1 \([0, 1, 0, -912, 11028]\) \(-70945777/5808\) \(-6875185152\) \([]\) \(110592\) \(0.63356\) \(\Gamma_0(N)\)-optimal