Properties

Label 152592.cf
Number of curves $1$
Conductor $152592$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 152592.cf1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 152592.cf do not have complex multiplication.

Modular form 152592.2.a.cf

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 4 q^{7} + q^{9} - q^{11} + 2 q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 152592.cf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152592.cf1 152592cr1 \([0, 1, 0, 8319, -306549]\) \(860492463104/1056655611\) \(-78175608724224\) \([]\) \(460800\) \(1.3519\) \(\Gamma_0(N)\)-optimal