Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-49464x-4196880\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-49464xz^2-4196880z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-791427x-269391746\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-129, 222)$ | $2.1969102953722999263175332421$ | $\infty$ |
| $(-120, 60)$ | $0$ | $2$ |
Integral points
\( \left(-129, 222\right) \), \( \left(-129, -93\right) \), \( \left(-120, 60\right) \), \( \left(556, 11552\right) \), \( \left(556, -12108\right) \)
Invariants
| Conductor: | $N$ | = | \( 15210 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $91487337786000$ | = | $2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{3803721481}{26000} \) | = | $2^{-4} \cdot 5^{-3} \cdot 7^{3} \cdot 13^{-1} \cdot 223^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5129240812084319536165801655$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.31885674185639126010778617375$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.906187683689355$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.5734111435572355$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1969102953722999263175332421$ |
|
| Real period: | $\Omega$ | ≈ | $0.32026223148149681299171495110$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot2\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.2215243613636423339242301858 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.221524361 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.320262 \cdot 2.196910 \cdot 24}{2^2} \\ & \approx 4.221524361\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 96768 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.3 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 1266 & 7 \\ 209 & 1520 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 24 \\ 492 & 127 \end{array}\right),\left(\begin{array}{rr} 519 & 1556 \\ 500 & 1479 \end{array}\right),\left(\begin{array}{rr} 1537 & 24 \\ 1536 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 781 & 24 \\ 780 & 1 \end{array}\right),\left(\begin{array}{rr} 391 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 1460 & 1541 \end{array}\right),\left(\begin{array}{rr} 1424 & 1539 \\ 765 & 374 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$2415329280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \) |
| $3$ | additive | $2$ | \( 338 = 2 \cdot 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 15210v
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 130a1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.0.9360.2 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-15}, \sqrt{-39})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.53466192.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.4.97742882250000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.370150560000.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.14806022400.2 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.198011286959452505221022437500000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | split | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 4 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.