Properties

Label 15210.v
Number of curves $4$
Conductor $15210$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15210.v have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15210.v do not have complex multiplication.

Modular form 15210.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + 4 q^{7} - q^{8} - q^{10} - 6 q^{11} - 4 q^{14} + q^{16} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15210.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15210.v1 15210v3 \([1, -1, 0, -315639, 65594205]\) \(988345570681/44994560\) \(158324327278940160\) \([2]\) \(290304\) \(2.0622\)  
15210.v2 15210v1 \([1, -1, 0, -49464, -4196880]\) \(3803721481/26000\) \(91487337786000\) \([2]\) \(96768\) \(1.5129\) \(\Gamma_0(N)\)-optimal
15210.v3 15210v2 \([1, -1, 0, -19044, -9325692]\) \(-217081801/10562500\) \(-37166730975562500\) \([2]\) \(193536\) \(1.8595\)  
15210.v4 15210v4 \([1, -1, 0, 171081, 249282333]\) \(157376536199/7722894400\) \(-27174886486861838400\) \([2]\) \(580608\) \(2.4088\)