Properties

Label 15210.bj
Number of curves $4$
Conductor $15210$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15210.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15210.bj do not have complex multiplication.

Modular form 15210.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + 4 q^{7} + q^{8} - q^{10} + 4 q^{14} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15210.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15210.bj1 15210ba4 \([1, -1, 1, -764588, 154326007]\) \(520300455507/193072360\) \(18343048378631740920\) \([2]\) \(580608\) \(2.3963\)  
15210.bj2 15210ba2 \([1, -1, 1, -675863, 214032017]\) \(261984288445803/42250\) \(5506182366750\) \([2]\) \(193536\) \(1.8470\)  
15210.bj3 15210ba1 \([1, -1, 1, -42113, 3373517]\) \(-63378025803/812500\) \(-105888122437500\) \([2]\) \(96768\) \(1.5004\) \(\Gamma_0(N)\)-optimal
15210.bj4 15210ba3 \([1, -1, 1, 148012, 17070967]\) \(3774555693/3515200\) \(-333965377854014400\) \([2]\) \(290304\) \(2.0497\)