Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1520.a1 |
1520e1 |
1520.a |
1520e |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{11} \cdot 5^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.109123604$ |
$1$ |
|
$12$ |
$960$ |
$0.321857$ |
$-16241202/171475$ |
$0.93308$ |
$3.71051$ |
$[0, 0, 0, -67, -926]$ |
\(y^2=x^3-67x-926\) |
152.2.0.? |
$[(53, 380)]$ |
1520.b1 |
1520i1 |
1520.b |
1520i |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{4} \cdot 5^{5} \cdot 19^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$760$ |
$48$ |
$0$ |
$2.168876954$ |
$1$ |
|
$3$ |
$960$ |
$0.628373$ |
$5405726654464/407253125$ |
$0.99078$ |
$4.38016$ |
$[0, 1, 0, -921, -10346]$ |
\(y^2=x^3+x^2-921x-10346\) |
2.3.0.a.1, 4.6.0.b.1, 10.6.0.a.1, 20.24.0.e.1, 152.12.0.?, $\ldots$ |
$[(62, 418)]$ |
1520.b2 |
1520i2 |
1520.b |
1520i |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{8} \cdot 5^{10} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$760$ |
$48$ |
$0$ |
$4.337753908$ |
$1$ |
|
$1$ |
$1920$ |
$0.974947$ |
$298091207216/3525390625$ |
$0.96838$ |
$4.76805$ |
$[0, 1, 0, 884, -44280]$ |
\(y^2=x^3+x^2+884x-44280\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0.d.1, 40.24.0.bc.1, 152.12.0.?, $\ldots$ |
$[(229/2, 3553/2)]$ |
1520.c1 |
1520d2 |
1520.c |
1520d |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{8} \cdot 5 \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.859606069$ |
$1$ |
|
$5$ |
$256$ |
$-0.220084$ |
$3631696/1805$ |
$0.78833$ |
$2.81860$ |
$[0, 1, 0, -20, -20]$ |
\(y^2=x^3+x^2-20x-20\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(-2, 4)]$ |
1520.c2 |
1520d1 |
1520.c |
1520d |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{4} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.719212138$ |
$1$ |
|
$3$ |
$128$ |
$-0.566657$ |
$702464/475$ |
$0.78481$ |
$2.21593$ |
$[0, 1, 0, 5, 0]$ |
\(y^2=x^3+x^2+5x\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[(4, 10)]$ |
1520.d1 |
1520j2 |
1520.d |
1520j |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$0.266274271$ |
$1$ |
|
$8$ |
$1728$ |
$1.164286$ |
$-2376117230685121/342950$ |
$0.98759$ |
$5.96768$ |
$[0, -1, 0, -44480, 3625600]$ |
\(y^2=x^3-x^2-44480x+3625600\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? |
$[(120, 40)]$ |
1520.d2 |
1520j1 |
1520.d |
1520j |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{15} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$456$ |
$16$ |
$0$ |
$0.088758090$ |
$1$ |
|
$10$ |
$576$ |
$0.614980$ |
$-2992209121/2375000$ |
$0.90876$ |
$4.23132$ |
$[0, -1, 0, -480, 6400]$ |
\(y^2=x^3-x^2-480x+6400\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? |
$[(0, 80)]$ |
1520.e1 |
1520f2 |
1520.e |
1520f |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{8} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$192$ |
$-0.105160$ |
$472058064/475$ |
$0.91565$ |
$3.48296$ |
$[0, 0, 0, -103, 402]$ |
\(y^2=x^3-103x+402\) |
2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 380.12.0.? |
$[]$ |
1520.e2 |
1520f1 |
1520.e |
1520f |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{4} \cdot 5 \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$96$ |
$-0.451734$ |
$3538944/1805$ |
$1.20155$ |
$2.43664$ |
$[0, 0, 0, -8, 3]$ |
\(y^2=x^3-8x+3\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[]$ |
1520.f1 |
1520b3 |
1520.f |
1520b |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{10} \cdot 5 \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$760$ |
$48$ |
$0$ |
$8.014590064$ |
$1$ |
|
$1$ |
$512$ |
$0.385319$ |
$899466517764/95$ |
$0.96248$ |
$4.70302$ |
$[0, 0, 0, -2027, -35126]$ |
\(y^2=x^3-2027x-35126\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.1, 40.24.0-40.z.1.2, $\ldots$ |
$[(2089/6, 44605/6)]$ |
1520.f2 |
1520b4 |
1520.f |
1520b |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{10} \cdot 5 \cdot 19^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$760$ |
$48$ |
$0$ |
$2.003647516$ |
$1$ |
|
$7$ |
$512$ |
$0.385319$ |
$1263284964/651605$ |
$0.94894$ |
$3.80654$ |
$[0, 0, 0, -227, 434]$ |
\(y^2=x^3-227x+434\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 10.6.0.a.1, 20.24.0-20.g.1.2, 152.24.0.?, $\ldots$ |
$[(-11, 40)]$ |
1520.f3 |
1520b2 |
1520.f |
1520b |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{8} \cdot 5^{2} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$380$ |
$48$ |
$0$ |
$4.007295032$ |
$1$ |
|
$3$ |
$256$ |
$0.038746$ |
$884901456/9025$ |
$0.92560$ |
$3.56873$ |
$[0, 0, 0, -127, -546]$ |
\(y^2=x^3-127x-546\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.1, 76.24.0.?, 380.48.0.? |
$[(97/2, 825/2)]$ |
1520.f4 |
1520b1 |
1520.f |
1520b |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{4} \cdot 5^{4} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$760$ |
$48$ |
$0$ |
$2.003647516$ |
$1$ |
|
$3$ |
$128$ |
$-0.307828$ |
$-55296/11875$ |
$1.13186$ |
$2.67690$ |
$[0, 0, 0, -2, -21]$ |
\(y^2=x^3-2x-21\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 38.6.0.b.1, 40.24.0-40.z.1.12, 76.24.0.?, $\ldots$ |
$[(23, 110)]$ |
1520.g1 |
1520h1 |
1520.g |
1520h |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.594651921$ |
$1$ |
|
$4$ |
$192$ |
$-0.051817$ |
$357911/950$ |
$0.81125$ |
$3.05509$ |
$[0, 1, 0, 24, -76]$ |
\(y^2=x^3+x^2+24x-76\) |
152.2.0.? |
$[(4, 10)]$ |
1520.h1 |
1520c2 |
1520.h |
1520c |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{8} \cdot 5^{7} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$0.593392841$ |
$1$ |
|
$5$ |
$8960$ |
$1.622547$ |
$31248575021659890256/28203125$ |
$1.01626$ |
$6.88377$ |
$[0, -1, 0, -416660, 103658192]$ |
\(y^2=x^3-x^2-416660x+103658192\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(364, 300)]$ |
1520.h2 |
1520c1 |
1520.h |
1520c |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{4} \cdot 5^{14} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.186785683$ |
$1$ |
|
$3$ |
$4480$ |
$1.275972$ |
$-121981271658244096/115966796875$ |
$1.08046$ |
$5.74859$ |
$[0, -1, 0, -26035, 1626942]$ |
\(y^2=x^3-x^2-26035x+1626942\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[(381/2, 375/2)]$ |
1520.i1 |
1520a1 |
1520.i |
1520a |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( 2^{4} \cdot 5^{3} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$192$ |
$-0.151219$ |
$304900096/45125$ |
$0.86112$ |
$3.04486$ |
$[0, -1, 0, -35, -58]$ |
\(y^2=x^3-x^2-35x-58\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[]$ |
1520.i2 |
1520a2 |
1520.i |
1520a |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{8} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$384$ |
$0.195354$ |
$91765424/296875$ |
$0.86089$ |
$3.46741$ |
$[0, -1, 0, 60, -400]$ |
\(y^2=x^3-x^2+60x-400\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[]$ |
1520.j1 |
1520g1 |
1520.j |
1520g |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 19 \) |
\( - 2^{23} \cdot 5^{2} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2112$ |
$0.588370$ |
$-11993263569/972800$ |
$0.93850$ |
$4.32085$ |
$[0, 0, 0, -763, -8662]$ |
\(y^2=x^3-763x-8662\) |
152.2.0.? |
$[]$ |