Properties

Label 151620.f
Number of curves $4$
Conductor $151620$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 151620.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 151620.f do not have complex multiplication.

Modular form 151620.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} + 6 q^{11} + 4 q^{13} + q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 151620.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
151620.f1 151620p3 \([0, -1, 0, -108781, 12791206]\) \(189123395584/16078125\) \(12102552887250000\) \([2]\) \(1539648\) \(1.8274\)  
151620.f2 151620p1 \([0, -1, 0, -22141, -1257470]\) \(1594753024/4725\) \(3556668603600\) \([2]\) \(513216\) \(1.2781\) \(\Gamma_0(N)\)-optimal
151620.f3 151620p2 \([0, -1, 0, -13116, -2300760]\) \(-20720464/178605\) \(-2151073171457280\) \([2]\) \(1026432\) \(1.6247\)  
151620.f4 151620p4 \([0, -1, 0, 116844, 58728456]\) \(14647977776/132355125\) \(-1594051445885472000\) \([2]\) \(3079296\) \(2.1740\)