Properties

Label 1512e
Number of curves $1$
Conductor $1512$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 1512e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1512.f1 1512e1 \([0, 0, 0, -1188, 7236]\) \(36799488/16807\) \(84687918336\) \([]\) \(1440\) \(0.79180\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1512e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1512e do not have complex multiplication.

Modular form 1512.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 6 q^{13} + 7 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display