Properties

Label 151008.t
Number of curves $1$
Conductor $151008$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 151008.t1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 151008.t do not have complex multiplication.

Modular form 151008.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} + q^{9} - q^{13} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 151008.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
151008.t1 151008bt1 \([0, -1, 0, 1508467, -198258267]\) \(432344000000/269440587\) \(-236572601242841690112\) \([]\) \(4392960\) \(2.5985\) \(\Gamma_0(N)\)-optimal