Show commands: SageMath
Rank
The elliptic curves in class 15015.s have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 15015.s do not have complex multiplication.Modular form 15015.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 15015.s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 15015.s1 | 15015b3 | \([1, 1, 0, -188083, -31469858]\) | \(735827390583361804729/122159491489035\) | \(122159491489035\) | \([2]\) | \(133120\) | \(1.7110\) | |
| 15015.s2 | 15015b4 | \([1, 1, 0, -79733, 8333532]\) | \(56059153781993690329/2200526953389765\) | \(2200526953389765\) | \([2]\) | \(133120\) | \(1.7110\) | |
| 15015.s3 | 15015b2 | \([1, 1, 0, -12908, -393813]\) | \(237877383098883529/72479767385025\) | \(72479767385025\) | \([2, 2]\) | \(66560\) | \(1.3644\) | |
| 15015.s4 | 15015b1 | \([1, 1, 0, 2217, -39888]\) | \(1204244503934471/1416434394375\) | \(-1416434394375\) | \([2]\) | \(33280\) | \(1.0179\) | \(\Gamma_0(N)\)-optimal |