Properties

Label 15015.s
Number of curves $4$
Conductor $15015$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15015.s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15015.s do not have complex multiplication.

Modular form 15015.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - q^{7} - 3 q^{8} + q^{9} - q^{10} - q^{11} + q^{12} + q^{13} - q^{14} + q^{15} - q^{16} - 6 q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 15015.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15015.s1 15015b3 \([1, 1, 0, -188083, -31469858]\) \(735827390583361804729/122159491489035\) \(122159491489035\) \([2]\) \(133120\) \(1.7110\)  
15015.s2 15015b4 \([1, 1, 0, -79733, 8333532]\) \(56059153781993690329/2200526953389765\) \(2200526953389765\) \([2]\) \(133120\) \(1.7110\)  
15015.s3 15015b2 \([1, 1, 0, -12908, -393813]\) \(237877383098883529/72479767385025\) \(72479767385025\) \([2, 2]\) \(66560\) \(1.3644\)  
15015.s4 15015b1 \([1, 1, 0, 2217, -39888]\) \(1204244503934471/1416434394375\) \(-1416434394375\) \([2]\) \(33280\) \(1.0179\) \(\Gamma_0(N)\)-optimal