Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-3780x-89424\)
|
(homogenize, simplify) |
\(y^2z=x^3-3780xz^2-89424z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3780x-89424\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-35, 1)$ | $2.3363702751807186347231369118$ | $\infty$ |
$(85, 451)$ | $4.7916012538888820816078623996$ | $\infty$ |
$(-36, 0)$ | $0$ | $2$ |
Integral points
\( \left(-36, 0\right) \), \((-35,\pm 1)\), \((72,\pm 108)\), \((85,\pm 451)\), \((1692,\pm 69552)\)
Invariants
Conductor: | $N$ | = | \( 14976 \) | = | $2^{7} \cdot 3^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $2096160768$ | = | $2^{13} \cdot 3^{9} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{37044000}{13} \) | = | $2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7^{3} \cdot 13^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.75879299739004126929082384794$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.81607566471764841779094487800$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9654668336860603$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.778372099004389$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.180291694074021050956058887$ |
|
Real period: | $\Omega$ | ≈ | $0.60888566737933824575661768313$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.1986337022625942475041256641 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.198633702 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.608886 \cdot 10.180292 \cdot 4}{2^2} \\ & \approx 6.198633702\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 12288 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}^{*}$ | additive | -1 | 7 | 13 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 312 = 2^{3} \cdot 3 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 212 & 1 \\ 103 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 155 & 0 \end{array}\right),\left(\begin{array}{rr} 196 & 121 \\ 41 & 282 \end{array}\right),\left(\begin{array}{rr} 290 & 1 \\ 167 & 0 \end{array}\right),\left(\begin{array}{rr} 309 & 4 \\ 308 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[312])$ is a degree-$161021952$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/312\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 39 = 3 \cdot 13 \) |
$3$ | additive | $2$ | \( 1664 = 2^{7} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 1152 = 2^{7} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 14976.m
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{78}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.179712.3 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.87329473560576.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ss | ord | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 2,2 | 2 | 2 | 2 | 2 | 2 | 2,4 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.