Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-1842818247x+30034591497819\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-1842818247xz^2+30034591497819z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-29485091955x+1922184370768462\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-6348941/225, 26095570072/3375)$ | $12.496070102767143631977541355$ | $\infty$ | 
| $(32761, 2179763)$ | $0$ | $3$ | 
Integral points
      
    \( \left(32761, 2179763\right) \), \( \left(32761, -2212524\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 149454 \) | = | $2 \cdot 3^{2} \cdot 19^{2} \cdot 23$ |  | 
| Discriminant: | $\Delta$ | = | $10837849836430406300085943002$ | = | $2 \cdot 3^{11} \cdot 19^{8} \cdot 23^{9} $ |  | 
| j-invariant: | $j$ | = | \( \frac{55900396438928556625}{875360193471018} \) | = | $2^{-1} \cdot 3^{-5} \cdot 5^{3} \cdot 11^{3} \cdot 19 \cdot 23^{-9} \cdot 26053^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.1802167982252729332426994323$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6679513344469244475390585259$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0156774850275607$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.346530747270756$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $12.496070102767143631977541355$ |  | 
| Real period: | $\Omega$ | ≈ | $0.040572216557350556719547104040$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 108 $ = $ 1\cdot2^{2}\cdot3\cdot3^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $6.0839191479036285326804761339 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 6.083919148 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.040572 \cdot 12.496070 \cdot 108}{3^2} \\ & \approx 6.083919148\end{aligned}$$
Modular invariants
Modular form 149454.2.a.x
For more coefficients, see the Downloads section to the right.
| Modular degree: | 94556160 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $3$ | $4$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 | 
| $19$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 | 
| $23$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $3$ | 3B.1.1 | 3.8.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 552 = 2^{3} \cdot 3 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 415 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 277 & 6 \\ 279 & 19 \end{array}\right),\left(\begin{array}{rr} 549 & 550 \\ 542 & 545 \end{array}\right),\left(\begin{array}{rr} 526 & 21 \\ 551 & 206 \end{array}\right),\left(\begin{array}{rr} 97 & 6 \\ 291 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 547 & 6 \\ 546 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[552])$ is a degree-$1231110144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 74727 = 3^{2} \cdot 19^{2} \cdot 23 \) | 
| $3$ | additive | $8$ | \( 722 = 2 \cdot 19^{2} \) | 
| $19$ | additive | $146$ | \( 414 = 2 \cdot 3^{2} \cdot 23 \) | 
| $23$ | split multiplicative | $24$ | \( 6498 = 2 \cdot 3^{2} \cdot 19^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 149454.x
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 49818.d1, its twist by $57$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.3.199272.1 | \(\Z/6\Z\) | not in database | 
| $6$ | 6.6.21919550151168.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.0.369375586992.4 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database | 
| $9$ | 9.3.10800911539233072.2 | \(\Z/9\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/12\Z\) | not in database | 
| $18$ | 18.0.122233858331169034570327171036201350848197951488.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ss | ord | ss | ord | ord | add | split | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 6 | - | 3,1 | 1 | 1,3 | 1 | 1 | - | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | 0 | - | 0,0 | 0 | 0,0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
