Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+592875x-39216011\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+592875xz^2-39216011z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+9485997x-2500338706\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 149454 \) | = | $2 \cdot 3^{2} \cdot 19^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-13996690710943186944$ | = | $-1 \cdot 2^{14} \cdot 3^{7} \cdot 19^{8} \cdot 23 $ |
|
| j-invariant: | $j$ | = | \( \frac{1861471439}{1130496} \) | = | $2^{-14} \cdot 3^{-1} \cdot 19 \cdot 23^{-1} \cdot 461^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3629984826214279301595649251$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.14926698115692055554407598129$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9231465470144782$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.321689074199811$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.12933398520213908710064804855$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot2\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.5520078224256690452077765826 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.552007822 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.129334 \cdot 1.000000 \cdot 12}{1^2} \\ & \approx 1.552007822\end{aligned}$$
Modular invariants
Modular form 149454.2.a.l
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3064320 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{14}$ | nonsplit multiplicative | 1 | 1 | 14 | 14 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $19$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
| $23$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 276 = 2^{2} \cdot 3 \cdot 23 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 275 & 2 \\ 274 & 3 \end{array}\right),\left(\begin{array}{rr} 139 & 2 \\ 139 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 185 & 2 \\ 185 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 275 & 0 \end{array}\right),\left(\begin{array}{rr} 97 & 2 \\ 97 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[276])$ is a degree-$615555072$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/276\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 74727 = 3^{2} \cdot 19^{2} \cdot 23 \) |
| $3$ | additive | $8$ | \( 16606 = 2 \cdot 19^{2} \cdot 23 \) |
| $7$ | good | $2$ | \( 74727 = 3^{2} \cdot 19^{2} \cdot 23 \) |
| $19$ | additive | $146$ | \( 414 = 2 \cdot 3^{2} \cdot 23 \) |
| $23$ | nonsplit multiplicative | $24$ | \( 6498 = 2 \cdot 3^{2} \cdot 19^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 149454.l consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 49818.n1, its twist by $57$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.99636.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.2739943768896.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.103366433639428272.2 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | ord | ord | ord | ord | add | nonsplit | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.