Properties

Label 149058io
Number of curves $2$
Conductor $149058$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("io1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 149058io have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 149058io do not have complex multiplication.

Modular form 149058.2.a.io

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{5} - q^{8} - 4 q^{10} + 4 q^{11} + q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 149058io

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
149058.eh2 149058io1 \([1, -1, 0, -10425, -283347]\) \(2803221/832\) \(37191297019968\) \([2]\) \(645120\) \(1.3095\) \(\Gamma_0(N)\)-optimal
149058.eh1 149058io2 \([1, -1, 0, -152385, -22854987]\) \(8754552981/1352\) \(60435857657448\) \([2]\) \(1290240\) \(1.6561\)