Properties

Label 149058hc
Number of curves $2$
Conductor $149058$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 149058hc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 149058hc do not have complex multiplication.

Modular form 149058.2.a.hc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{5} - q^{8} + 4 q^{10} + 4 q^{11} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 149058hc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
149058.j2 149058hc1 \([1, -1, 0, -510834, 98209684]\) \(2803221/832\) \(4375518903102215232\) \([2]\) \(4515840\) \(2.2825\) \(\Gamma_0(N)\)-optimal
149058.j1 149058hc2 \([1, -1, 0, -7466874, 7854194284]\) \(8754552981/1352\) \(7110218217541099752\) \([2]\) \(9031680\) \(2.6290\)