Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-15764436x-9113773460\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-15764436xz^2-9113773460z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-252230979x-583533732418\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2365/4, 2365/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 149058 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $214821862551285895246068$ | = | $2^{2} \cdot 3^{16} \cdot 7^{6} \cdot 13^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{476379541}{236196} \) | = | $2^{-2} \cdot 3^{-10} \cdot 11^{3} \cdot 71^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1700227947481990216052143824$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27595044220966502868520018895$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.065463153454839$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.148836209567072$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.079732284544028551326207697179$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.5514331054089136424386463097 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.551433105 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.079732 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 2.551433105\end{aligned}$$
Modular invariants
Modular form 149058.2.a.di
For more coefficients, see the Downloads section to the right.
Modular degree: | 17971200 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{10}^{*}$ | additive | -1 | 2 | 16 | 10 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B | 5.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 2031 & 3920 \\ 1540 & 3767 \end{array}\right),\left(\begin{array}{rr} 3119 & 0 \\ 0 & 5459 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 5220 & 5111 \end{array}\right),\left(\begin{array}{rr} 1819 & 1554 \\ 0 & 5459 \end{array}\right),\left(\begin{array}{rr} 5441 & 20 \\ 5440 & 21 \end{array}\right),\left(\begin{array}{rr} 2731 & 3906 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 1602 & 3115 \\ 4025 & 4598 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$405775319040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
$3$ | additive | $8$ | \( 16562 = 2 \cdot 7^{2} \cdot 13^{2} \) |
$7$ | additive | $26$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $62$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 149058gi
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 1014c2, its twist by $273$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.15502032.1 | \(\Z/4\Z\) | not in database |
$4$ | 4.0.968877.2 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | 8.4.3845007938064384.69 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.240312996129024.55 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$20$ | 20.4.1707549206475927736291505176314000000000000000.1 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | ord | add | add |
$\lambda$-invariant(s) | 6 | - | 0 | - | - |
$\mu$-invariant(s) | 0 | - | 0 | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.