Properties

Label 149058.hi
Number of curves $1$
Conductor $149058$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 149058.hi1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 149058.hi do not have complex multiplication.

Modular form 149058.2.a.hi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} + q^{8} + 2 q^{10} - 5 q^{11} + q^{16} - 8 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 149058.hi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
149058.hi1 149058by1 \([1, -1, 1, -150848249, 713152522905]\) \(-2673465150439/6656\) \(-945112083070078490112\) \([]\) \(30481920\) \(3.2637\) \(\Gamma_0(N)\)-optimal