Properties

Label 149058.bo
Number of curves $1$
Conductor $149058$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 149058.bo1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 149058.bo do not have complex multiplication.

Modular form 149058.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + 3 q^{11} + q^{16} - 7 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 149058.bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
149058.bo1 149058fh1 \([1, -1, 0, -20454030, 38538968404]\) \(-5022437771811277/497757560832\) \(-93791545214587833360384\) \([]\) \(15814656\) \(3.1485\) \(\Gamma_0(N)\)-optimal