Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+26984x+6896020\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+26984xz^2+6896020z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+2185677x+5020641522\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(64516/9, 16392662/27)$ | $7.8341129931016073778262028819$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 148720 \) | = | $2^{4} \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-21747670630400000$ | = | $-1 \cdot 2^{17} \cdot 5^{5} \cdot 11 \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{109902239}{1100000} \) | = | $2^{-5} \cdot 5^{-5} \cdot 11^{-1} \cdot 479^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8159784838364849803318834661$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.15964337545422869711209237614$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9443840180226643$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7795233540605726$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.8341129931016073778262028819$ |
|
Real period: | $\Omega$ | ≈ | $0.28073737088713919010959763702$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.7973131396644882158030413729 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.797313140 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.280737 \cdot 7.834113 \cdot 4}{1^2} \\ & \approx 8.797313140\end{aligned}$$
Modular invariants
Modular form 148720.2.a.bm
For more coefficients, see the Downloads section to the right.
Modular degree: | 921600 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{9}^{*}$ | additive | -1 | 4 | 17 | 5 |
$5$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5720 = 2^{3} \cdot 5 \cdot 11 \cdot 13 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 5711 & 10 \\ 5710 & 11 \end{array}\right),\left(\begin{array}{rr} 4289 & 3510 \\ 0 & 5719 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 5665 & 5601 \end{array}\right),\left(\begin{array}{rr} 3079 & 0 \\ 0 & 5719 \end{array}\right),\left(\begin{array}{rr} 2081 & 2210 \\ 2925 & 5331 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1431 & 5070 \\ 5395 & 2757 \end{array}\right),\left(\begin{array}{rr} 2861 & 2210 \\ 1105 & 5331 \end{array}\right)$.
The torsion field $K:=\Q(E[5720])$ is a degree-$5313724416000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 9295 = 5 \cdot 11 \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 29744 = 2^{4} \cdot 11 \cdot 13^{2} \) |
$11$ | split multiplicative | $12$ | \( 13520 = 2^{4} \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $86$ | \( 880 = 2^{4} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 148720w
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 110a1, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-13}) \) | \(\Z/5\Z\) | not in database |
$3$ | 3.1.440.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.85184000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.6805427200.1 | \(\Z/10\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$16$ | deg 16 | \(\Z/15\Z\) | not in database |
$20$ | 20.4.202705934715552468455738102048000000000000000.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | nonsplit | ord | split | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 1 | 1 | 2 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.