Properties

Label 148720p
Number of curves $1$
Conductor $148720$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 148720p1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148720p do not have complex multiplication.

Modular form 148720.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - q^{11} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 148720p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148720.x1 148720p1 \([0, 0, 0, 116272, 293554352]\) \(8792838144/1888046875\) \(-37327837792960000000\) \([]\) \(2257920\) \(2.4347\) \(\Gamma_0(N)\)-optimal