Properties

Label 148200.u
Number of curves $1$
Conductor $148200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 148200.u1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148200.u do not have complex multiplication.

Modular form 148200.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} - 2 q^{11} + q^{13} + 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 148200.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148200.u1 148200bd1 \([0, -1, 0, -1884741508, 31494483287137]\) \(-2961686524287311350789156096/139506818115234375\) \(-34876704528808593750000\) \([]\) \(58613760\) \(3.8037\) \(\Gamma_0(N)\)-optimal