Properties

Label 148137b
Number of curves $2$
Conductor $148137$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 148137b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(67\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 148137b do not have complex multiplication.

Modular form 148137.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} + 3 q^{8} + q^{9} + q^{11} - q^{12} - 4 q^{13} - q^{16} + 2 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 148137b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148137.d2 148137b1 \([1, 0, 0, -473683, 109469936]\) \(129938649625/17924577\) \(1621428236483667513\) \([2]\) \(1615680\) \(2.2208\) \(\Gamma_0(N)\)-optimal
148137.d1 148137b2 \([1, 0, 0, -1977498, -960344055]\) \(9454162623625/1068251283\) \(96632282810138572827\) \([2]\) \(3231360\) \(2.5674\)