Properties

Label 148120v
Number of curves $1$
Conductor $148120$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 148120v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
148120.bm1 148120v1 \([0, -1, 0, -373121, -40877515]\) \(541696/245\) \(2598270783320065280\) \([]\) \(2225664\) \(2.2286\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 148120v1 has rank \(1\).

Complex multiplication

The elliptic curves in class 148120v do not have complex multiplication.

Modular form 148120.2.a.v

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} - q^{7} + q^{9} - 3 q^{11} - 4 q^{13} - 2 q^{15} - 6 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display