Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+223x+705\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+223xz^2+705z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+18036x+568080\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(13/4, 305/8)$ | $4.2924708740132934507668153030$ | $\infty$ |
| $(-3, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 14784 \) | = | $2^{6} \cdot 3 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-968884224$ | = | $-1 \cdot 2^{22} \cdot 3 \cdot 7 \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( \frac{4657463}{3696} \) | = | $2^{-4} \cdot 3^{-1} \cdot 7^{-1} \cdot 11^{-1} \cdot 167^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.41223418570876233929675045747$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.62748658513115562482909772472$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8499917728489924$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.8986312672408574$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.2924708740132934507668153030$ |
|
| Real period: | $\Omega$ | ≈ | $1.0077387140368525806557369481$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.3256890786188009900773493362 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.325689079 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.007739 \cdot 4.292471 \cdot 4}{2^2} \\ & \approx 4.325689079\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 6144 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{12}^{*}$ | additive | -1 | 6 | 22 | 4 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1688 & 3 \\ 1517 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1841 & 8 \\ 1840 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1842 & 1843 \end{array}\right),\left(\begin{array}{rr} 1151 & 1152 \\ 218 & 1145 \end{array}\right),\left(\begin{array}{rr} 796 & 1 \\ 1343 & 6 \end{array}\right),\left(\begin{array}{rr} 685 & 690 \\ 1150 & 229 \end{array}\right),\left(\begin{array}{rr} 620 & 1 \\ 1255 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$40874803200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 231 = 3 \cdot 7 \cdot 11 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 4928 = 2^{6} \cdot 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 2112 = 2^{6} \cdot 3 \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 14784.y
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 462.a4, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-231}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{22}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-42}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{22}, \sqrt{-42})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.2.1788864.2 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.680112989208576.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.1411215175028736.141 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | ord | nonsplit | split | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.