Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3+41280x-35156880\) | (homogenize, simplify) | 
| \(y^2z=x^3+41280xz^2-35156880z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3+41280x-35156880\) | (homogenize, minimize) | 
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 147600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 41$ |  | 
| Discriminant: | $\Delta$ | = | $-538456616426188800$ | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 41^{7} $ |  | 
| j-invariant: | $j$ | = | \( \frac{2813708206080}{194754273881} \) | = | $2^{18} \cdot 3^{3} \cdot 5 \cdot 41^{-7} \cdot 43^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0818606007144527298402040920$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.84582069591512993514070077244$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.1994714563919167$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.055851786616266$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.13937843684906935523253977703$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $0.27875687369813871046507955407 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 0.278756874 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.139378 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 0.278756874\end{aligned}$$
Modular invariants
Modular form 147600.2.a.cb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1330560 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 | 
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 | 
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 | 
| $41$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $7$ | 7Ns | 7.28.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1722 = 2 \cdot 3 \cdot 7 \cdot 41 \), index $112$, genus $5$, and generators
$\left(\begin{array}{rr} 8 & 7 \\ 49 & 43 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 6 & 49 \end{array}\right),\left(\begin{array}{rr} 1688 & 7 \\ 245 & 1716 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1602 & 127 \\ 377 & 257 \end{array}\right),\left(\begin{array}{rr} 1709 & 14 \\ 1708 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 584 & 11 \\ 1177 & 32 \end{array}\right)$.
The torsion field $K:=\Q(E[1722])$ is a degree-$14282956800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1722\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 3075 = 3 \cdot 5^{2} \cdot 41 \) | 
| $3$ | additive | $6$ | \( 16400 = 2^{4} \cdot 5^{2} \cdot 41 \) | 
| $5$ | additive | $10$ | \( 5904 = 2^{4} \cdot 3^{2} \cdot 41 \) | 
| $7$ | good | $2$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) | 
| $41$ | nonsplit multiplicative | $42$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) | 
Isogenies
This curve has no rational isogenies. Its isogeny class 147600dp consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 9225a1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.1.12300.2 | \(\Z/2\Z\) | not in database | 
| $6$ | 6.0.18608670000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/3\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/7\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ord | ss | ord | ord | ord | ss | ord | ss | ord | nonsplit | ord | ss | 
| $\lambda$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 
| $\mu$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
