Properties

Label 1470c
Number of curves 22
Conductor 14701470
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1470c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331+T1 + T
551+T1 + T
7711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 16T+11T2 1 - 6 T + 11 T^{2} 1.11.ag
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+8T+29T2 1 + 8 T + 29 T^{2} 1.29.i
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1470c do not have complex multiplication.

Modular form 1470.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2q3+q4q5+q6q8+q9+q10+6q11q126q13+q15+q16q18+4q19+O(q20)q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} + 6 q^{11} - q^{12} - 6 q^{13} + q^{15} + q^{16} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1470c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1470.c1 1470c1 [1,1,0,1068,8112][1, 1, 0, -1068, -8112] 393349474783/153600000393349474783/153600000 5268480000052684800000 [2][2] 22402240 0.756010.75601 Γ0(N)\Gamma_0(N)-optimal
1470.c2 1470c2 [1,1,0,3412,53808][1, 1, 0, 3412, -53808] 12801408679457/1125000000012801408679457/11250000000 3858750000000-3858750000000 [2][2] 44804480 1.10261.1026