sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 1470c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1+T |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1−6T+11T2 |
1.11.ag
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+17T2 |
1.17.a
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
29 |
1+8T+29T2 |
1.29.i
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1470c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 1470c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1470.c1 |
1470c1 |
[1,1,0,−1068,−8112] |
393349474783/153600000 |
52684800000 |
[2] |
2240 |
0.75601
|
Γ0(N)-optimal |
1470.c2 |
1470c2 |
[1,1,0,3412,−53808] |
12801408679457/11250000000 |
−3858750000000 |
[2] |
4480 |
1.1026
|
|